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Outline

• Why use direct Vlasov methods ?

• Overview of Vlasov methods for plasma and beam

simulations

? Particle methods

? Spectral methods

? Eulerian methods.

• Applications: beam propagation in uniform and periodic

focusing channels.
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Why use direct Vlasov methods ?

• Important noise in PIC methods especially in poorly

populated regions of phase space makes it hard to see

phenomena like e.g.

? particle trapping (strong Landau damping) in plasmas

? halo formation in beams

• Computers now powerful enough to do realistic physics

using a grid in phase space.

• Provides alternative to PIC for code benchmarking.
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The Vlasov equation

The distribution function f(x, v, t) is solution of

∂f

∂t
+ v · ∇x f +

q

m
(E + v ×B) · ∇v f = 0,

generally coupled with the Poisson or Maxwell equations.

• Numerical challenges:

? Six-dimensional space

? appearance of very small scales

file:/home/sonnen/PP4/Vlasov/anim200.gif
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Overview of Numerical Methods for the
Vlasov equation

Different classes of methods:

• Particle Methods

• Spectral methods

• Methods based on a grid of phase-space
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Particle Methods

• Particle-In-Cell (PIC) method :

? Idea: Follow particle trajectories, use grid field solve.

? Literature: Birdsall-Langdon, Hockney-Eastwood,
Neunzert-Wick, Cottet-Raviart, Victory-Allen

• SPH type methods:

? Idea: Compute interaction between finite sized macro-

particles.

? Literature: Bateson-Hewett, ...
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The Particle-In-Cell Method

• Particles advanced using

characteristics

• Fields are computed on grid

• Particle data scattered to

surrounding grid points to

compute charge and current

densities

• Fields are computed on

particles using interpolation
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Overview of Numerical Methods for the
Vlasov equation

Different classes of methods:

• Particle Methods

• Spectral methods

• Methods based on a grid of phase-space



8

Spectral Methods

• Fourier-(Fourier) methods: Knorr, Klimas-Farell

? Split between position and velocity advection

∂f

∂t
+ v · ∇x f = 0,

∂f

∂t
+
q

m
E · ∇v f = 0.

? Perform Fourier transform to be able to compute

exactly the phase advance for each mode, e. g.

f̂ ∗k(v) = f̂nk (v) exp(−i 2π k · v∆t/2L).

• (Fourier)-Hermite methods : Shoucri, Holloway,
Pulvirenti-Wick
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Overview of Numerical Methods for the
Vlasov equation

Different classes of methods:

• Particle Methods

• Spectral methods

• Methods based on a grid of phase-space
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Eulerian Methods

• Forward semi-Lagrangian (PIC with reconstruction):

Denavit

• Backward semi-Lagrangian: Cheng-Knorr, ES-Roche-
Bertrand-Ghizzo, , Nakamura-Yabe, ...

• Finite Volume: Boris-Book, Fijalkow, Filbet-ES-
Bertrand

• Energy conserving Finite Difference Method: Filbet-
Kazantsev-ES
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The forward semi-Lagrangian Method

• f conserved along

characteristics

dX

dt
= V,

dV

dt
= E(X, t)

• Grid points advanced

along characteristics

• Values of f scattered to

grid
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The backward semi-Lagrangian Method

• f conserved along

characteristics

• Find the origin of the

characteristics ending

at the grid points

• Interpolate old value at

origin of characteristics

from known grid

values → High order

interpolation needed
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Interpolation schemes

• Lagrange: polynomial interpolation using node values

• Hermite: polynomial interpolation using values of

functions and derivatives. Values of derivatives can be

computed numerically or by advecting gradients (CIP).

• Spline: cubic spline in original method by Cheng and

Knorr.
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The Finite Volume Method

•
∫
V f dx dv conserved

along characteristics

• Three steps:

? Reconstruction

? Resolution

? Projection

• Slope limiters for

positivity
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Description of the FV method

Consider the transport equation in conservative form

∂tf + ∂x (u(t, x) f) = 0, ∀(t, x), (1)

and define the characteristic curves:

d x
ds

(s) = u(s, x(s)), x(t) = x. (2)

We denote by x(s, t, x) the solution of (2), then

∀K ⊂ R,
∫
K

f(t, x)dx =
∫

x(s,t,K)
f(s, x)dx. (3)
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The numerical scheme

The starting point of the conservative method is to use

this last property to compute the approximation on a

mesh of the phase space:∫ xi+1/2

xi−1/2

f(tn+1, x)dx =
∫ x(tn,tn+1,xi+1/2)

x(tn,tn+1,xi−1/2)
f(tn, x)dx,

then, we set

Φi+1/2(tn) =
∫ xi+1/2

x(tn,tn+1,xi+1/2)
f(tn, x)dx.
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The method can be split into three steps to go from the

time tn to tn+1 = tn + ∆t:

1. Reconstruction

2. Resolution

3. Projection
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The reconstruction step

We use an interpolation method on the cell [xi−1
2
, xi+1

2
],

fh(x) = fi+
ε+
i

6 ∆x2α(x) (fi+1− fi)+
ε−i

6 ∆x2β(x) (fi− fi−1),

to reconstruct high order polynomial, where

α(x) = 2 (x− xi)(x− xi−3/2) + (x− xi−1/2)(x− xi+1/2),

β(x) = 2 (x− xi)(x− xi+3/2) + (x− xi−1/2)(x− xi+1/2),

ε+
i and ε−i are slope correctors allowing to preserve

positivity.
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The resolution and projection steps

The resolution step. We approximate the caracteristic

curves by solving the system of ODE’s (2).

The projection step. We compute the cell-average of

the approximation at time tn+1

fn+1
i =

1
∆x

∫ xi+1/2

xi−1/2

fh(tn+1, x)dx.

Evaluation of the average allows to ignore fine details of

the exact solution which may be very costly to compute.
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A L2-norm conserving scheme

• Introduced by Arakawa (1966) for equations of the form

∂f

∂t
+ J(ψ, f) = 0,

for Vlasov ψ = ϕ− v2

2 and J(ψ, f) = ∂ψ
∂x

∂f
∂v −

∂ψ
∂v

∂f
∂x,

• Second and fourth order implemented:

? Particle conservation: d
dt

∫
R

2 f(t) dx dv = 0.
? Energy conservation: d

dt

∫
R

2 f(t)ψ(t) dx dv = 0.
? Conservation of ‖f‖L2.
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Stabilization of the method

• Strong oscillations in presence of filamentation.

• Collision model of the form ∂f
∂t = ∂J

∂v , where J is

chosen so as to maximize entropy and conserve as many

moments
∫
fvk dv as desired (Sommeria and Robert).

• A Lagrange multiplier technique yields (for k = 2):

∂f

∂t
+ J(ψ, f) = α

∂

∂v

(
∂f

∂v
+A1f −A2fv

)
,

with A1 = u0

ε−u2
0/n

, and A2 = n
ε−u2

0/n
.
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Properties of interpolation schemes

Figure 1: Amplification factor and phase error
with respect to α for a fixed mode k. FBM method
(yellow) and third order PFC (green), semi-Lagrangian
method with a cubic Hermite (blue) and spline (red)
interpolation.
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Evolution of L1 and L2 norms

Figure 2: Time development of numerical L1 and L2

norms for the non linear Landau damping test.
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Evolution of L2 norm and kinetic entropy

Figure 3: Time development of numerical L2 norm and
entropy of f(t) for the two stream instability test.
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Comparison of Eulerian and particle
methods
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Computation time

Numerical method 32 × 32 points 32 × 64 points 32 × 128 points

FBM 03.33 sec. 05.39 sec. 10.80 sec.

PFC 03.56 sec. 06.28 sec. 11.20 sec.

FDM 17.22 sec. 35.27 sec. 71.20 sec.

SPECTRAL 04.10 sec. 08.25 sec. 16.90 sec.

CIP 13.83 sec. 21.40 sec. 43.24 sec.

SL SPLINE 06.12 sec. 10.55 sec. 20.90 sec.

SL HERMITE 03.60 sec. 06.90 sec. 11.00 sec.
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Parallelization

• Transpose of distribution function performed at each

split step

? Perfect load balacing at any given time

? Huge data transfer (needs good network)

? Concurrency of numerical computations and

communications (E. Violard, F. Filbet)

• Option might be optimal for non local interpolations,

probably not for local ones ??



28

Beam propagation in uniform and periodic
focusing channel

• Uniform focusing: Potassium ions, 80 keV, 0.1 A, tune

depression 0.25, rms-matched semi-gaussian beam

• Periodic focusing: Same beam data, emittance 0.005,

beam radius 0.1 m, lattice period 1 m, focusing length

0.2 m. phase advance: σ0 = 113 degrees, σ = 50
degrees.
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rrms and r′rms with

envelope code.

(1) (2)

rrms and r′rms with

VADOR code.

(3) (4)
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Conclusions and perspectives

• History

? 1970s: At the beginning of Vlasov simulations when

only 1D simulations could be performed, all methods

coexisted.

? 1980s-1990s: multi-dimensional simulations could be

done only with particle methods.

? End 1990s-2000s: Computer power is now enough

for multi-dimensional simulations using non particle

methods.
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• Future

? Different methods should coexist depending on

problem at hand.

? Next week

∗ Unstructured meshes.

∗ Specific handling of axisymmetric beams.

∗ Adaptive meshes: semi-Lagrangian method on

adaptive mesh using wavelet techniques to handle

refinement.
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A few papers and web pages

? Nicolas Besse : Semi-Lagrangian schemes for the Vlasov

equation on an unstructured mesh of phase space

http://www-irma.u-strasbg.fr/irma/publications/2002/02028.shtml

? Francis Filbet, Jean-Louis Lemaire, Eric Sonnendrucker :

Direct axisymmetric Vlasov simulations of space charge

dominated beams

http://www-irma.u-strasbg.fr/irma/publications/2002/02009.shtml

? Francis Filbet, Eric Sonnendrucker : Comparison of

Eulerian Vlasov Solvers

http://www-irma.u-strasbg.fr/irma/publications/2001/01035.shtml
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? Francis Filbet, Eric Sonnendrucker, Pierre Bertrand:

Conservative numerical schemes for the Vlasov equation.

J. Comp. Phys. Volume 172, Number 1 pp. 166-188

(2001).

? The VADOR code:

http://www-irma.u-strasbg.fr/~filbet
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Preview of next week’s talk

• Axisymmetric simulations.

• An adaptive method based on wavelets.
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The axisymmetric Vlasov equation

The distribution function f(r, vr, vθ, t) is solution of

∂f

∂t
+ vr

∂f

∂r
+
(
qEs

m
+
q Bz

m
vθ +

v2
θ

r

)
∂f

∂vr

−
(
q Bz

m
vr +

vθ vr
r

)
∂f

∂vθ
= 0,

where Bz is external and Es given by Poisson’s equation

1
r

∂ rEs

∂r
= ρ(t, r)/ε0, ρ(t, r) = q

∫
R

2
f(t, r, vr, vθ)dvr dvθ.
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Invariants of the Vlasov equation

In order to reduce the dimension of the problem we use

the invariance of the canonical angular momentum

P (r, vθ) = mrvθ +
r2

2
qBz.

Denoting by I = P
m and making the change of variable

(r, vr, vθ)→ (r, vr, I) with vθ = I
r −

1
2
q Bz
m r, we get

∂f

∂t
+ vr

∂f

∂r
+

(
q

m
Es(t, r) +

I2

r3 −
1
4

(
q Bz

m

)2

r

)
∂f

∂vr
= 0.
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Discretization of the axisymmetric Vlasov
equation

• Invariant I is a parameter but needs careful

discretization. Characteric curves of the form

ω2

2
r2 + v2

r +
I2

r2 = const.

→ necessary to control I/r hence I is discretized

according to I = ω r2, in vicinity of axis.

• Difficulty near r = 0 because of I2/R3 term.
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• Time-Splitting scheme:

? Advection in r : ∂f∗

∂t + vr
∂f∗

∂r = 0,
? Advection in vr :

∂f ∗∗

∂t
+

(
q

m
Es(t, r) +

I2

r3 −
1
4

(
q Bz

m

)2

r

)
∂f ∗∗

∂vr
= 0.

• Cubic Hermite interpolation with numerical computation

of derivatives by a fourth order finite difference scheme

∂rf
n
i =

1
12∆r

[
8 [fni+1 − fni−1]− [fni+2 − fni−2]

]
.
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Adaptive semi-Lagrangian method

• We want to optimize the number of grid points for a

given numerical error.

• Multi-resolution techniques using interpolating wavelets

are well suited to determine where refinement is needed.

• Principle of the method

? Use different levels of meshes

? At one given level, decompose gridfunction into

gridfunction at coarser level + details.
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V
j

Grid Gj, grid points xjk = k 2j, level j
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Vj+1V
j

Grid Gj+1, grid points xj+1
k = k 2j+1, level j + 1
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Vj+1 Vj+2V
j

Grid Gj+2, grid points xj+2
k = k 2j+2, level j + 2
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Prediction operator

Predict values at unknown positions of finer level using

lagrange interpolating polynomial on coarser level.

back
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Prediction operator

Predict values at unknown positions of finer level using

lagrange interpolating polynomial on coarser level.

cubic
polynomial

back
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Prediction operator

Predict values at unknown positions of finer level using

lagrange interpolating polynomial on coarser level.

cubic
polynomial

value
predicted

cj+1
2k+1 = P2N+1(x

j+1
2k+1) and cj+1

2k = cjk

back
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The Algorithm for the Vlasov Problem...

• Initialisation: decomposition and compression of f0.

• Prediction in x of the grid G̃ (for important details)

at the next split time step following the characteristics

forward. Retain points at level just finer.

• Construction of Ĝ: grid where we have to compute

values of f ∗ in order to compute its wavelet transform.

back
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...The Algorithm for the Vlasov Problem...

• Advection-interpolation in x: follow the

characteristics backwards in x and interpolate using

wavelet decomposition (1): f ∗(x, v) = fn(x− v∆t, v)

• Wavelet transform of f ∗: compute the ck and dk
coefficients at the points of G̃.

• Computation of electric field from Poisson.

• Prediction in v : as for x.

back
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...The Algorithm for the Vlasov Problem

• Construction of Ĝ: grid where we have to compute

values of fn+1 in order to compute its wavelet transform.

• Advection-interpolation in v: as for x fn+1(x, v) =
f ∗(x, v − E(x) ∆t) using wavelet decomposition.

• Wavelet transform of fn+1: compute the ck and dk
coefficients at the points of G̃.

• Compression of fn+1.

back


